Shedding of TRAP by a Rhomboid Protease from the Malaria Sporozoite Surface Is Essential for Gliding Motility and Sporozoite Infectivity
نویسندگان
چکیده
Plasmodium sporozoites, the infective stage of the malaria parasite, move by gliding motility, a unique form of locomotion required for tissue migration and host cell invasion. TRAP, a transmembrane protein with extracellular adhesive domains and a cytoplasmic tail linked to the actomyosin motor, is central to this process. Forward movement is achieved when TRAP, bound to matrix or host cell receptors, is translocated posteriorly. It has been hypothesized that these adhesive interactions must ultimately be disengaged for continuous forward movement to occur. TRAP has a canonical rhomboid-cleavage site within its transmembrane domain and mutations were introduced into this sequence to elucidate the function of TRAP cleavage and determine the nature of the responsible protease. Rhomboid cleavage site mutants were defective in TRAP shedding and displayed slow, staccato motility and reduced infectivity. Moreover, they had a more dramatic reduction in infectivity after intradermal inoculation compared to intravenous inoculation, suggesting that robust gliding is critical for dermal exit. The intermediate phenotype of the rhomboid cleavage site mutants suggested residual, albeit inefficient cleavage by another protease. We therefore generated a mutant in which both the rhomboid-cleavage site and the alternate cleavage site were altered. This mutant was non-motile and non-infectious, demonstrating that TRAP removal from the sporozoite surface functions to break adhesive connections between the parasite and extracellular matrix or host cell receptors, which in turn is essential for motility and invasion.
منابع مشابه
Antibodies against thrombospondin-related anonymous protein do not inhibit Plasmodium sporozoite infectivity in vivo.
Thrombospondin-related anonymous protein (TRAP), a candidate malaria vaccine antigen, is required for Plasmodium sporozoite gliding motility and cell invasion. For the first time, the ability of antibodies against TRAP to inhibit sporozoite infectivity in vivo is evaluated in detail. TRAP contains an A-domain, a well-characterized adhesive motif found in integrins. We modeled here a three-dimen...
متن کاملTRAP Is Necessary for Gliding Motility and Infectivity of Plasmodium Sporozoites
Many protozoans of the phylum Apicomplexa are invasive parasites that exhibit a substrate-dependent gliding motility. Plasmodium (malaria) sporozoites, the stage of the parasite that invades the salivary glands of the mosquito vector and the liver of the vertebrate host, express a surface protein called thrombospondin-related anonymous protein (TRAP) that has homologs in other Apicomplexa. By g...
متن کاملMalaria parasite LIMP protein regulates sporozoite gliding motility and infectivity in mosquito and mammalian hosts
Gliding motility allows malaria parasites to migrate and invade tissues and cells in different hosts. It requires parasite surface proteins to provide attachment to host cells and extracellular matrices. Here, we identify the Plasmodium protein LIMP (the name refers to a gliding phenotype in the sporozoite arising from epitope tagging of the endogenous protein) as a key regulator for adhesion d...
متن کاملMolecular mechanisms of malaria sporozoite motility and invasion of host cells.
Malaria sporozoites have the unique capacity to invade two entirely different types of target cell in the mosquito vector and the vertebrate host during the course of the parasite's life cycle. Although little is known about the specific interaction of the sporozoite with its target cells, two sporozoite proteins, circumsporozoite (CS) and thrombospondin-related adhesive protein (TRAP), have be...
متن کاملRole for the Plasmodium sporozoite-specific transmembrane protein S6 in parasite motility and efficient malaria transmission
Malaria transmission occurs by intradermal deposition of Plasmodium sporozoites during the infectious bite of a female Anopheles mosquito. After formation in midgut-associated oocysts sporozoites actively enter mosquito salivary glands and subsequently invade host hepatocytes where they transform into clinically silent liver stages. To date, two sporozoite-specific transmembrane proteins have b...
متن کامل